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ABSTRACT 

2 3 6  771 
This paper considers adaptive control systems which have nonlinear 

controllers with storage .Staircase techniques have been used to derive the 

optimizing equations for calculating the optimum parameters of the compen- 

sator for the least mean square e r r o r  between the actual output and the de- 

s i red  output in  terms of the statistical properties of the input signal and the 

plant dynamics. 

An example of an input-adaptive system has been calculated showing 

the superior performance of a power-series controller with storage over 

the optimum linear controller, a s  well as  the optimum p o w e r - s e 9  controller 

without storage. 
-> u 
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INTRODUCTION 

1 
In a recent report the theory of adaptive systems with nonlinear 

compensation was developed by using staircase techniques. 

ventional linear Compensator, with variable coefficients, normally used 

for modification in an adaptive system was  replaced by an instantaneous 

(no- storage) nonlinear compensator. Optimum coefficients for this non- 

linear compensator were calculated from the statistical parameters of 

the input function and the plant dynamics, the criterion for optimization 

being the smallest mean square e r r o r  between the actual output and the 

desired output. 

cases  even a simple power-series device could give a smaller mean 

square e r r o r  than the best linear compensator. 

The con- 

An example was  calculated to illustrate that in  many 

The object of this report  is to extend the previous work to include 

The 

validity of this extension is based on the Wiener-Bose theory2 that a non- 

linear device with storage is equivalent to the cascade combination of an 

instantaneous nonlinear device and a linear device with storage elements. 

Wiener showed that any system can be regarded as a computer which 

performs a transformation on the past of its input to yield the present 

output. 

integral can be used to  obtain the present output from the past of the input. 

Hence, any linear system is characterized by its response to a unit im- 

pulse. Similarly any nonlinear system (with finite settling time) can be 

characterized by a linear network with multiple outputs cascaded with a 

nonlinear network with no memory of the past, 

I the case where the compensator is a nonlinear device with storage. 
I 

~ 

For  the case where the transformation is linear, the convolution 

I 

1 
This is justifiable because 

I the linear network serves  to characterize the past of the input and the 

nonlinear network operates on this information to  yield the present output. I 

In this paper, as in the previous, it is assumed that the input data 

are sampled at  regular intervals, the sampling rate being fixed in accord- 

ance with Shannon's sampling theorem, and then converted into a s ta i rcase 
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function by using a zero-order hold. 

order to overcome the mathematical intractability of the equations 

arising out of the optimization of nonlinear systems subject to continuous 

random inputs . The dynamics of the plant are considered a s  known in 

te rms  of i ts  staircase P-response, and although it is not necessary, for  

the sake of simplicity it has been assumed that the plant is time-invariant. 

The method developed is also applicable, with a slight modification, for  

the case where the plant dynamics a r e  varying slowly with time. 

This assumption is necessary in 

5 



NONLINEAR STAIRCASE SYSTEMS WITH STORAGE 

The general nonlinear staircase system with storage may be 

represented by the block diagram shown in Figure 1, where L is a linear 

system of weighting functionW(7) and f [  ] is a no-memory nonlinear de- 

vice. 

*SC = Sampler andc lamp  

Figure 1. A General Nonlinear Staircase System with Storage 

The output of the system at  the k th sampling instant may be expressed 
c 
i) as r 

y(kT) = f x0 u k +  x1 u ~ - ~  + + x u ! k o  

k 
P 

us Xk-s = f  

s= 0 

where 

x = x(rT) r 

(2.01) 

u = u(rT) r 

= staircase P-response of L at  the k th sampling instant. 

In the particular case of a first-order system, belonging to Class 

N1 of ZadehgJ7, it is permissible to represent it by the block diagram 
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shown in Figure 2. 

sampling instant is given by 

For  this case, the s ta i rcase  output at  the k th 

k 

( 2 . 0 2 )  

r = O  

Figure 2 .  Storage Nonlinear Staircase System of F i r s t  Order 

It may be noted that in deriving Equations ( 2 . 0 1 )  and ( 2 . 0 2 )  it has 

been assumed that the linear system is physically realizable, that is, for 

L the staircase P-response ordinate u does not exist for r less than 0. r 
A s  the optimizing equations for higher order  systems a re  con- 

siderably more involved, in this work only systems of the f i rs t  order wi l l  

be considered. 



OPTIMIZATION OF ADAPTIVE SYSTEMS MA\ IiqG FIKST-ORDEK 

NONLINEAR CONTROLLERS WITH STORAGE 

The block diagram of a model-reference type adaptive control 

system is shown in Figure 3. 

transformation on the input signal so that the output of the known plant 

corresponds a s  closely to the desired output as possible. 

this may be done a computer is required, which would use the statistical 

properties of the input, the desired output and the plant dynamics to cal- 

culate the optimum controller for a given index of performance. 

The controller )I performs a suitable 

In order that 

Figure 3. A Model Reference Adaptive Control System 

To render the problem more practicable, the form of the controller 

is first assumed, and then its parameters a r e  calculated. 

one may consider a linear controller, and calculate its weighting function, 

w(T), which will give the least mean-square e r r o r  between the desired 

For  instance, 
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1 output and the actual output. It was shown that the staircase P- 

response ordinates, u 
by solving the following set of linear simultaneous equations: 

of the optimum linear controller can be calculated r' 

( y u  + Q U  + Q U  + *  . + C Y  u = P o  

N - i U ~  = pi  q u o  + cr u + C Y p 2  + * + CY 

( y u  + c r l U l + C r U  + * * * + C Y  

0 0  1 1  2 2  N N  

0 1  

2 0  0 2  N - 2 U N =  '2 

. . . . . . . . . . . . . . . . . e . . . .  

C Y U  + ( Y  + C Y  + + Q0UN = p, N o N-lU1 N-2U2 

where 
N 

r= 0 

N 

(3.01) 

(3.02) 

(3.03) 

r= 0 

y(rT) = The staircase P-response ordinate of the plant at t = rT 

N - r  - 
Qyy(rT) = V (kT) y(k+r T) 

k= 0 

k= 0 

and N - r  

#xz(ft"I' = - 1 1 x(kT) z(k+rT) N - r+l 
k= 0 

and 

z ( rT)  = the desired output at t = rT. 

(3.04) 

(3.05) 

(3. 06) 

(3.07) 

(3.08) 
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On the other hand, if the controller is a no-storage linear device 

with input-output relationship characterized by 

M 

y ( rT)  = ak  fk [  x(rT)] 
k= 0 

where fk [  ] is a known nonlinear functional, and a is an unknown co- 

solving the following set of linear simultaneous equations: 

k 
efficient to  be calculated, it has been shown 1 that ak can be obtained by 

M N N 

m= 0 r= 0 s = o  
N 

= 1 7 r d.  3 2  (f; rT )  for j = 0, 1, 2, M, 
r= 0 

where the nonlinear correlation ordinates 4 (f; T s  T) and 

gjZ (f; r T )  a r e  defined as below: 
mj 

N-s 

and 

for  s < r . 

N - r  

(3.09) 

(3.10) 

(3.11) 

(3.12) 

p= 0 

An important subclass of no-storage nonlinear devices character- 

ized by Equation (3.09) is the instantaneous power-series device the out- 
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put and input for  which are related by 

M 
k 

’r = 1 akXr 
k= 0 

The optimum values of the coefficients ak which will give the 

least mean square e r r o r  between the desired output and actual output 

are obtained by solving the following equations: 

9 1 a l  + C Y  1 2  a 2 + * * -  + “ I M ~ M  = P, 

021al + a i 2  2 2MaM = ’2 a + * * * + C Y  

. . . . . . . . . . . . . . . . . . .  
CY a + aM2a2 + + aMMaM = pM 

N N 

M1 1 

where 

and 
N 

’k= 1 ‘rO k ( rT)  
x z  r= 0 

(3. 13) 

(3. 14) 

(3. 15) 

(3. 16) 

The nonlinear correlation functions in Equations (3 .  15) and (3 .  16) 

are defined as 

N - r  
i 

and 
N - r  

k 
X J  x 

P P+r  

P+r  
Z 

k 
P 

X 

(3. 17) 

(3 .  18) 

p= 0 
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If the controller is assumed to be nonlinear with storage, it can 

be represented as the cascade combination of a linear system L, of 

weighting function W(T) and an instantaneous nonlinear device, as shown 

in  Figure 1. 

be considered as the cascade combination shown in Figure 2. Assuming 

that the controller is of the latter type, one would have to calculate the 

s ta i rcase P-response ordinates of the linear system L, a s  wel l  as the 

coefficients , a 

yield the minimum mean square e r ro r  between the actual output and the 

desired output. In practice, however, this approach is not very fruitful 

as the optimizing equations get very involved. 

On the other hand a nonlinear system of the first order may 

of the instantaneous nonlinear system which will  together r’ 

An alternative approach, which consists of optimization in two 

steps, is much more practicable. 

of the optimum linear controller a r e  first calculated; and it is assumed 

the optimum nonlinear controller would consist of a cascade combination 

of an instantaneous nonlinear device and this optimum linear device, with 

the arrangement shown in Figure 2. Hence, after s ta i rcase P-response 

of L has been obtained by using Equations (3. Ol), these may be convolved 

with the staircase P-response ordinates of the plant, y (kT). The result 

of the convolution, v (kT), may now be used in place of y (kT) in Equations 

(3 .  lo), to obtain the coefficients a 

linear controller defined in Equation (3.09). 

The s ta i rcase P-response ordinates 

of the optimum instantaneous non- k 

This procedure, therefore, gives a cascade combination of the 

optimum linear controller, preceded by a suitable instantaneous nonlinear 

device. 

combination will be better than that of either of the components alone. 

It may be pointed out that, in  general, the performance of this 
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EXAMPLE O F  AN INPUT-SENSING NONLINEAR ADAPTIVE SYSTEM 

WITH STORAGE 

To compare the relative performances of the various types of 

controllers discussed in the previous section, an example of an input- 

sensing adaptive system may be taken. The plant is assumed time- 

invariant, and the desired output is taken a s  being equal to the input. The 

For  this trans- 1 
transfer function of the plant may be taken as (s+l) (s+lO) 
fer function, the staircase P-response ordinates a r e  given by 

Y ( 0 )  = 0 (4.0 1) 

(4.02) -0.1 -0 .  l(m-1) 1 -1 -(m-1) - - ( 1 - e  ) e  1 
90 y(mT)  = F(l - e  ) e  

where the sampling interval, T=O. 1 second. 

The values of y (mT) were  calculated for m = 0 to 10, and then 

used to calculate the plant correlation ordinates 0 
Equation (3.05). 

(mT), a s  defined in 
YY 

These values a re  shown in the following table: 

m 

0 

1 

2 
3 
4 
5 
6 
7 

8 
9 

10 

0 

0.003550058 

0.006983582 
0.0077065 11 
0.007483446 
0.006959068 
0.006365899 
0.0057855 15 
0.005244299 
0.004748677 
0.004298045 

0.0003677154 
0.000345 144 1 
0.0003045481 
0.000259 11 12 
0.0002134002 
0.0001688645 
0.000125922 

0.000084902 
0.0000468 7384 

0.00001525831 
0 



The random input to this plant is given below: 

m 

0 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

20 

x(mT) 
1.05 

2.24 

2.41 

4.22 

3. 76 

7.79 

9.96 

9.63 

8.96 

8.54 

5.86 
2.89 

6.36 

9.40 

1.04 

7.09 

5.11 

2.40 

0.1 

5.22 
0. 71 

Using Equations (3.06) and (3.17), various linear and nonlinear 

correlation ordinates may be calculated for an optimum power-series 

controller. These a r e  given on the following page. 



12 

m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

m 

8 

9 

10 

Oxx(mT) 

28.05965 

25.07729 

24.71797 

24. 79793 

22.69266 

18.94288 

17.26048 

17.203 13 

13. 17773 

13.28832 

13. 10950 

4 (mT) 
x x  

2 19.6037 

197.0056 

186.7973 

179.0746 

153.8706 

116.3172 

104. 1281 

105.4692 

73.66884 

83.44400 

97.70171 

0 2(mT) 
xx 

219.6037 

198. 1252 

189. 1206 

180. 1209 

155.2635 

124.2064 

107.4726 

97.5 1853 

65.90280 

64.5239 1 

60.03158 

1846.516 

1648. 127 

1465.940 

1290.391 

983.8791 

665.3069 

564.8315 

525.03 10 

302.3845 

376.3761 

452.4931 

9 3(mT) 
xx 

1846.516 

1702.325 

1570.523 

1438.085 

1195.828 

942.3560 

789.5974 

647.2070 

410.3618 

365.3017 

312.8916 

16181. 14 

14558.88 

12281.87 

10111.12 

7086.670 

4510.910 

3704.788 

3 103.490 

1635. 747 

1983.009 

23 19.410 

0 4(mT) 
xx 

16181.13 

15168.66 

13569.85 

1206 1.35 

9770. 167 

7639.574 

6237.582 

463 1.2 14 

2788.240 

2 185.960 

1680.060 

9 2 4(mT) 
x x  

145557.3 

13 1758.5 

106252.6 

82926.19 

54457.12 

33139.45 

26241.93 

19568.34 

9704.249 

10846. 79 

12090.70 

0 5(mT) 
xx 

145557.3 

137959.0 

120076.1 

104435.9 

82981.43 

64620.73 

5 1638.22 

35085.48 

20112.11 

13654.41 

9145.209 

9 2 5(mT) 
x x  

1332632.0 

1209639.0 

937139.6 

70 1059. 9 

437911.2 

257053.5 

195562. 1 

129526. 1 

61131.38 

60628.96 

63401.66 



~ m 

4044.293 24872.83 1633 19.6 11 14441.0 

3547.440 1983 1.48 117166.0 714222.7 7 

8 

9 

10 

I m 

I 0 

1 

2 

3 

I 4 

5 I 

6 

7 

8 
9 

10 

, 
I 

4 (mT) 
x x  

1846.516 

1695.835 

1571.307 

1470.086 

12 13.977 

896.6653 

796.2246 

769.7933 

538.7424 

64 1.9400 

847.1926 

4 (mT) 
x x  

16181.13 

15 187.66 

13908.55 

12846.77 

10321.55 

7689.59 1 

6829.470 

6083. 193 

4482.192 

5458.967 

7728.486 

16181.14 145557.3 1332632.0 12353830.0 

14582.62 130346.9 1186774.0 10930490.0 

12468.74 104778.5 905899.9 7966422.0 

0 4 2(mT) 
x x  

145557.3 

132648.8 

11 1268.3 

91701.55 

61086.71 

385 15.57 

34137.43 

26492.93 

15646.03 

23361.83 

37002.38 

9 4 3(mT) 
x x  

1332632.0 

1193013.0 

937151.9 

702263.3 

402131.8 

226280.4 

205334.5 

144203.3 

74630.6 

117620.0 

189231.7 

12353830.0 115585600.0 I 
~ 10893270.0 100456000.0 

~ 

8099677.0 71082890.0 

5602 79 1.0 45946 190.0 

2817615.0 20683940.0 

I 

I 
1425607.0 9367056.0 1 

830448.8 4895 162.0 ~ 

I 1303 135.0 8480916.0 

384156.2 2025677.0 

608655.0 3173124.0 

974485.1 5024439.0 
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m 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

4 (mT) 
x x  

145557.3 

13885 1.4 

126590.0 

116050.4 

91326.02 

69239.48 

6 1997.90 

50075.86 

39419. 12  

48920.23 

71966.29 

0 5 2(mT) 
x x  

1332632.0 

1224971.0 

1020039,O 

829441.0 

529575.5 

339921. 7 

311914.0 

207040. 1 

134080.8 

207725.1 

347839.4 

0 5 3(mT) 
x x  

12353830.0 

11061110.0 

86 10405.0 

6331608.0 

3395568.0 

1945815.0 

1871666.0 

1106885.0 

629255.7 

10384 14.0 

1779816. 0 

115585600.0 1089188000.0 

101182600.0 933765900.0 

74415720.0 652128300.0 

50266240.0 409715500.0 

23113710.0 164597300.0 

11893250.0 75271180.0 

11750270.0 75028990.0 

6304361.0 36696890.0 

3185603.0 16417940.0 

5327348.0 27482100.0 

9155225.0 47130420.0 

To calculate the optimum linear controller, f i rs t  the values of the 

cy’s and p 1  s, a s  defined in Equations (3. 02) and (3.03) are calculated. 

These are  given below: 

= 0.04542239 

= 0.04224973 

= 0.03964489 

= 0.03660728 

= 0.03299484 

cy5 = 0,02969728 
= 0.02736118 “6 
= 0.02522141 

= 0.02269131 “8 
cy9 = 0,02127776 

“0 

“1 

“2 

“3 

“4 

“7 

= 0.01943661 “10 

8, = 1. 152355 

8, = 1.068070 

8, = 0.9735248 

8, = 0.8869045 

8, 0.8110975 

8, = 0. 7395363 

8, = 9.6725995 

8, = 0.6066298 

8, = 0.5523519 

8, = 0.4910136 

plo = 0.4187140 

Using these values of “Is and P I S ,  the s ta i rcase P-response ordi- 

nates of the optimum linear controller a r e  calculated through Equations 

(3.01). These are given on the following page. 



15 

u = 26.93844 

u = 4.234751 
0 

1 
2 

u = -4.883514 

u 3  = -4.199415 

u4 = 1. 128078 
u = 3.567722 5 

= 0.6684761 

u = -3.806203 

u8 = 4.625687 

u9 = 1.321865 

u = -5.219115 

7 

10 

The mean square e r r o r  between the desired output and the actual 

output of the linear controller alone is used is given by 

- Q,(O) = 6. 11438. (4.03) 

r = O  

To calculate the nonlinear controller which should be connected in  
cascade with this optimum linear controller, the first step is to obtain the 

convolution of the staircase P-response of the linear controller and the 

s ta i rcase P-response of the plant using the relationship 

k 

Vk = 1 UrYk+r 
r= 0 

(4.04) 

These values of vk a r e  used to calculate the correlation function 

)r the combination, and a r e  given below: 

0 

0.09563301 

0.203 1604 

Qw(kT) 
0.2369704 

0.2004822 

0.1812449 
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3 

4 

5 

6 

7 

8 

9 

10 

0.2 198356 

0. 1852145 

0. 1562003 

0.1525930 

0. 1533819 

0.1325538 

-0.003237093 

0. 1229974 

0. 1504768 

0.1224713 

0.09350676 

0.06366732 

0.03905807 

0.02467862 

0.01176261 

0.00000 

Fromthese values, the CY’S and P I S  for the power-series controller 

These are given a re  calculated, as defined in Equations (3. 15) and (3. 16). 

below: 

2797.805 - 
“31 - 

“32 - 

339. 1764 - 
“21 - 

“22 - 

- 46.733 14 

21012. 72 - 2520.276 - 
“11 - 
“1 2 34 1.. 5 754 - - 

= 172522.6 

= 1477812.0 

= 12998280.0 

“33 

“34 

“35 

= 21012.72 

= 185515.6 

= 1687022.0 

“2 3 

“24 

“2 5 

= 2771.327 

= 23632.29 

= 207806.7 

“13 

“14 

“15 

C Y =  24492.86 221201.6 P, = 28.62 194 4 1  

“42 - 

“51 = 

Q52 - 1687022.0 P2 = 196.4032 - 1855 15.6 

= 1563037.0 

= 13138380.0 

= 115719200.0 

- 

= 13965200.0 P3 = 1582.595 

= 133686600.0 

= 1060478000.0 P5 = 123298.6 

“5 3 

“54 

“5 5 

“43 

“44 

“45 

P = 13717.33 4 

Finally, solving Equation (3. 14) for the optimum coefficients of the 

power series,  the following values are obtained: 
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a = 4.114004 1 

2 

3 

4 

5 

a = -0.8714087 

a = -0.000697533 

a = -0.00005014564 

a = 0.0006597933 

The mean-square e r r o r  between the desired output and actual 

output for the combination of the power-series controller and the linear 

controller is given by 
5 

= 1.90 (4.05) 
2 

G = #zz(0) - 1 anSn 
n= 1 

For comparison, a power-series controller without storage may 

be calculated for the same plant and input signal. In this case the optimum 

coefficients a r e  found to be 

= 105.5193 a- 1 
a.2 = -22.97353 

a =  -0.01269078 

a -  -0.000888152 

a =  0.0 1752 794 

and the mean square e r r o r  is found to  be 2.15. 

3 

4 -  

5 
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This example shows that a nonlinear controller with storage gives 

a performance much better than that of a linear controller, o r  a nonlinear 

controller with storage. 

of higher order is more involved, this work has been limited to considering 

nonlinear systems of first order only. 

improvements in performance of the controller is obtained. 

that the computations can be carr ied out in a very short time, and the 

parameters adjusted immediately afterwards. In the ideal case, all this 

should not take more than one sampling interval, but the technique would 

still be valid i f  the statistics of the input and the plant dynamics vary slowly 

with time. 

A s  the calculation of nonlinear storage systems 

But, even with these, considerable 

It is assumed 
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